
IJAICT Volume 3, Issue 10, October 2016
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.07.06 Published on 05 (10) 2016

Corresponding Author: Dr. S. Ambareesh, Vemana Institute of Technology, Bangalore, India. 564

ANNOTATING THE DOCUMENT USING CONTENT AND
QUERYING VALUE

Dr S. Ambareesh
Associate Professor,

Computer Science and Engineering,
Vemana Institute of Technology,

Bangalore, India

Ms. Thejaswani T Rao
Bachelor of Engineering,

Computer Science and Engineering,
Vemana Institute of Technology,

Bangalore, India

Ms. D. C. Jayalakshmi
Bachelor of Engineering,

Computer Science and Engineering,
Vemana Institute of Technology,

Bangalore, India

Abstract— There are many application domains where users
create and share information. Extraction algorithms facilitate the
extraction of structured relations, which are often expensive and
inaccurate, especially when operating on top of text that does not
contain any instances of the targeted structured information. We
present a novel alternative approach that facilitates the generation
of the structured metadata by identifying documents that are likely
to contain information of interest and this information is going to
be subsequently useful for querying the database. Our approach
relies on the idea that humans are more likely to add the necessary
metadata during creation time. As a major contribution of this
paper, we present algorithms that identify structured attributes that
are likely to appear within the document, by jointly utilizing the
content of the text and the query workload.

Keywords— Attributes Suggestion, Annotation, Datasets.

I. INTRODUCTION

Current information sharing tools, like content management
software (e.g., Microsoft SharePoint), allow users to share
documents and annotate (tag) them in an ad-hoc way.
Similarly, Google [1] allows users to define attributes for their
objects or choose from predefined templates. This annotation
process can facilitate subsequent information discovery. Many
annotation systems allow only “untyped” keyword annotation:
for instance, a user may annotate a weather report using a tag
such as “Storm Category 3”.

Annotation strategies that use attribute-value pairs are
generally more expressive, as they can contain more
information than untyped approaches. Many systems, though,
do not even have the basic “attribute-value” annotation that
would make a “pay-as-you go” querying feasible. Annotations
that use “attribute-value” pairs require users to be more
principled in their annotation efforts. Difficulties results in
very basic annotations, that is often limited to simple
keywords. Such simple annotations make the analysis and
querying of the data cumbersome. Users are often limited to

plain keyword searches, or have access to very basic
annotation fields, such as “creation date” and “owner of
document”.

The main goal of CADS is to lower the cost of creating
annotated documents that can be immediately used for
commonly issued semi-structured queries. Our key goal is to
encourage the annotation of the documents at creation time,
while the creator is still in the “document generation” phase,
even though the techniques can also be used for post
generation document annotation. Once uploaded, CADS
analyzes the text and creates an adaptive insertion form. The
form contains the best attribute names given the document text
and the information need, and the most probable attribute
values given the document text. The creator can inspect the
form, modify the generated metadata as- necessary, and
submit the annotated document for storage.

II. FRAMEWORK AND PROBLEM DEFINITION

In this section, we present the notation that we use in the rest
of the paper and describe the problem setting. As discussed in
Section 1, our goal is to suggest annotations for a document.
We define a document d as a pair (dt, da), composed of the
textual content dt and the set of existing user annotations da.
We use to denote the complete and optimal set of annotations
for d. The dopt

a serves as a conceptual baseline, i.e., is created
by an oracle with perfect knowledge of the domain of d (e.g.,
disaster management) and, of course, dopt

a is unknown to the
algorithm that is trying to estimate as accurately as possible
the dopt

a .

Table 1 summarizes the notation presented. Using the above,
we define our problem. A straightforward goal is to produce
and display in the adaptive insertion form dopt

a a , given dt;
this is usually a very large set of annotations. Even if we
could produce all relevant annotations, a large number of such

© 2016 IJAICT (www.ijaict.com)

Corresponding Author: Dr. S. Ambareesh, Vemana Institute of Technology, Bangalore, India. 565

annotations may also overwhelm the user who must examine,
modify, and approve all the suggestions. Hence, our efforts
focus not only on identifying the potential annotations fields
that exist in dopt

a, but also to rank them and display on top the
most important ones. Since the goal of annotations is to
facilitate future querying, we want the annotation effort to
focus on generating annotations useful for the queries in the
query workload W. So, if users are willing to fill-in at most k
annotations for a single document (where k is arbitrary, but
fixed), our goal is to generate a subset of dopt

a while under the
constraint of at-most-k- annoations. This set of annotations
should be the one that increases the visibility of document d in
W, that is, maximizes the number of queries that retrieve d.

Table 1: Notation

III. ATTRIBUTES SUGGESTION

In this section we study and propose solutions for the
“attributes suggestion” problem. From the problem definition
we identify two, potentially conflicting, and properties for
identifying and suggesting attributes for a document d:

• First, the attributes must have high querying value
with respect to the query workload W. That is, they
must appear in many queries in W, since the frequent
Attributes in W have a greater potential to improve
the visibility of d.

• Second, the attributes must have high content value
with respect to dt. That is, they must be relevant to dt.
Otherwise, the user will probably dismiss the
suggestions and d will not be properly annotated.

We combine both objectives, in a principled way, using a
probabilistic approach. Our theoretical model is similar to the
idea of language models [2], with one key difference: our
model assume that attributes are generated by two processes,
in parallel: (a) By inspecting the content of the document and
extracting a set of attributes related to the content of the
document, following a probability distribution given by an
(unknown to us) joint probability distribution and (b)
By knowing the types of queries that users typically issue to
the database, following again an (unknown to us) joint
probability distribution

3.1 Conditional Independence given Aj and Aj

We denote with be the posterior probability that
document d is annotated with Aj , given the forecast of W,d
and a prior belief P of CADS about the probability of adding
Aj in any document.5 We define the score of attribute Aj as the
odds that the attribute should appear in da. Using the Bayes
theorem:

The numerator and denominator are equivalent to the joint
distributions p(P,W, dt,Aj) and p(P,W, dt,Aj), respectively.
Using the chain rule on both terms:

If W is independent of P, given A, and dt is independent
of W,P, we simplify:

Our prior belief P is independent of p(Aj), as we are not using
any external knowledge to affect the estimates. So, the above
equation can be further simplified to:

Equation 1 is our score function. The first term represents the
likelihood of producing Aj , given the workload W. We refer
to that term as querying value as it expresses the “relevance”
of the attribute to the query workload. The second term, which

IJAICT Volume 3, Issue 10, October 2016

© 2016 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.07.06 Published on 05 (10) 2016

Corresponding Author: Dr. S. Ambareesh, Vemana Institute of Technology, Bangalore, India. 566

we refer to as content value is the likelihood of observing the
content dt given that the attribute Aj appears in the document.

3.2 Estimation Process
We now present our process for estimating the values of the
parameters in Equation 1.

Querying Value: Let WAj = {Q 2 W: use (Q,Aj)} be the set of
queries in W that use Aj as one of the predicate conditions. We
use Laplace smoothing [3] to avoid zero probabilities for the
attributes that do not appear in the workload, we have:

in dt, which is a typical assumption when dealing with textual
data (e.g., in probabilistic information retrieval, text
classification, language models, etc.) We have:

where the product goes over all terms w in dt.

Let DAj = {d 2 D : annotated(d,Aj)} be the set of documents in
the database D, annotated with the attribute Aj .

Let DAj ,w = {d 2 D : annotated(d,Aj) ^ contains(dt,w)} be the
set of documents in the database that are annotated with Aj
and also contain the word w in their text dt. We estimate the
probability of each term in Equation 3 as:

Again we use smoothing to avoid zero probabilities. For each
term, the prior is uniform and we update the probability using
the observed co-occurrences of Aj and w. In a similar way we
define:

where we examine only documents that have been annotated
and the attribute Aj was not added.

3.2 Conditional Independence among Forecaster Evidence
The second model is based on the assumption that each of the
two forecasters has independent information about the event
“attribute A appears in the document,” (which is different than
conditioning on Aj). We capture this information as a variable

with distribution p that models the occurrence of the event
“attribute A j appears in the document” as a Bernoulli
experiment.

Our final estimates is computed based on independent pieces
of evidence, using the following model [4]:

IV. EFFICIENCY ISSUES AND SOLUTIONS

In this section, we discuss the algorithmic approaches that
allow us to implement efficiently the algorithms described in
the previous section. In particular, we show how pipelined
algorithms can be employed [3] to compute the top-k
attributes with the highest scores, where scores are defined
using Equation 1 (Bayes strategy).

 We observe that in both strategies the score is a
monotonically increasing function (f(QV, CV) = CV ·QV for
Bayes.

V. EXPERIMENTS

5.1 Datasets
Documents: For our experiments we use two document
collections:

• The Emergency corpus consists of 270 documents, generated
by the Miami-Dade Emergency Management Office. The
documents are advisory, progress and situation reports
submitted by various county stakeholders during the five days
before and after Hurricane Wilma, which hit Miami-Dade
County in October 2005.

• The CNET corpus consists of 4,840 electronic product
reviews obtained from CNET. The dataset contains different
kinds of products like cameras, video games, television, audio
sets, and alarm clocks.

5.2 Annotations:
We generated annotations for the datasets, which we use as
training and test data, to train and evaluate our algorithms.
To annotate the CNET reviews we used the CNET
specifications page for each product. The page contains
structured data for a product in the form of “attribute name
value”. Given that we are only interested in annotations that
come from the document text (i.e. the product’s review), we
removed annotations that are not mentioned in any sentence in
the review text. To decide when a sentence s is related

IJAICT Volume 3, Issue 10, October 2016

© 2016 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.07.06 Published on 05 (10) 2016

Corresponding Author: Dr. S. Ambareesh, Vemana Institute of Technology, Bangalore, India. 567

(mentions) to an annotation we used the
containment ratio heuristic; specifically, we computed:

5.3 Queries:
When generating the query workload for our datasets we had
to address two main challenges. First, we did not have a query
workload that was used to query the data sets in our disposal.
So, we had to generate a workload, with an attribute
distribution representing the user interests in a realistic way.
Second, we had to create queries of the form attribute-value as
described in Section 2.

Then, used the relative frequencies of the queries in the
Google Insights/Trends to weight appropriately the workload
in the results. For example, for the emergency data set we
could see more queries related with the status of the schools
on the city compared to queries asking for the status of the
ports.

5.4 Attributes Suggestion Problem
In this experiment, we examine how the different strategies
solve the Attributes Suggestion Problem, which is the core
focus of our work. That is, if a strategy is used for attributes
suggestion, how well [4] are the queries of the workload
answered? To measure this we use the sum of documents
returned by the queries in the workload, where a document is
counted multiple times, once for every query that returns it.
We refer to this measure as Full Match. We also consider a
simpler variant, Partial Match, where we count how many
query conditions are satisfied by the documents, that is, we
view each query condition as a separate query. We first
introduce the optimal suggestion techniques, which will be
used as baselines to evaluate the strategies.

• OPTFullMatch suggests the subset of the ground-truth
attributes for each document that maximize its query visibility
in the query workload, that is, that satisfies the maximum
number of queries. Miah et al. [5] prove that this problem is
NP-Hard. However, given the relatively small size of our
query workload, we were able to compute an exact solution
using the exact algorithm from, following a brute-force
approach, which took a significant amount of time but allowed
us to measure exactly how close to the optimal each algorithm
is.

• OPTPartialMatch suggests a subset of the ground-truth
attributes that maximize the number of query conditions

satisfied. This can be computed making a single pass on the
workload

We report the average coverage across all documents, where
the coverage for one document is defined as the number of
matches (or partial matches) divided by the number of
matches of OPTFullMatch (or OPTPartialMatch,
respectively). Fig 1 and 2 show the average coverage for full
and partial matches for the strategies.

Fig 1 : Number of Full and Partial Matches in Emergency Dataset

Fig 2 : Number of Full and Partial Matches in CNET Dataset

VI. RELATED WORK

Collaborative Annotation: There are several system the favor
the collaborative annotation of objects and use previous
annotations or tags to annotate new objects. There has been a
significant amount of work in predicting the tags for
documents or other resources. Dataspaces and pay-as-you-go
integration: The integration model of CADS is similar to that
of dataspaces, where a loosely integration model is proposed
for heterogeneous sources. The basic difference is that
dataspaces integrate existing annotations for data sources, in
order to answer queries. Our work suggests the appropriate
annotation during insertion time, and also takes into
consideration the query workload to identify the most
promising attributes to add. Another related data model is that
of Google Base [1], where users can specify their own
attribute/value pairs, in addition to the ones proposed by the
system. However, the proposed attributes in Google Base are
hard-coded for each item category (e.g., real estate property).
In CADS, the goal is to learn what attributes to suggest. Pay-
as-you go integration techniques like Pay Go and [2] are

IJAICT Volume 3, Issue 10, October 2016

© 2016 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.07.06 Published on 05 (10) 2016

© 2016 IJAICT (www.ijaict.com)

Corresponding Author: Dr. S. Ambareesh, Vemana Institute of Technology, Bangalore, India. 568

useful to suggest candidate matchings at query time. However,
no previous work considers this problem at insertion time, as
in CADS. The work on Peer Data Management Systems is a
precursor of the above projects.

 VII CONCLUSION

We proposed adaptive techniques to suggest relevant
attributes to annotate a document, while trying to satisfy the
user querying needs. Our solution is based on a probabilistic
framework that considers the evidence in the document
content and the query workload. We present two ways to
combine these two pieces of evidence, content value and
querying value: a model that considers both components
conditionally independent and a linear weighted model.
Experiments shows that using our techniques, we can suggest
attributes that improve the visibility of the documents with
respect to the query workload by up to 50%. That is, we show
that using the query workload can greatly improve the
annotation process and increase the utility of shared data.

References

[1] Google,“Google base, http://www.google.com/base,” 2012.

[2] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy, “Pay-as-you-go user
feedback for dataspace systems,” in ACM SIGMOD, 2009.

[3] J. M. Ponte and W. B. Croft, “A language modeling approach to
information retrieval,” ACM SIGIR conference on Research and
development in information retrieval.

[4] C. D. Manning, P. Raghavan, and H. Schutze,Available: http://
www.amazon.com / exec/obidos/

[5] M. Miah, G. Das, V. Hristidis, and H. Mannila, “Standing out in a
crowd: Selecting attributes for maximum visibility,” ICDE, 2008.

IJAICT Volume 3, Issue 10, October 2016
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.07.06 Published on 05 (10) 2016

