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Abstract— There are many application domains where users 
create and share information. Extraction algorithms facilitate the 
extraction of structured relations, which are often expensive and 
inaccurate, especially when operating on top of text that does not 
contain any instances of the targeted structured information. We 
present a novel alternative approach that facilitates the generation 
of the structured metadata by identifying documents that are likely 
to contain information of interest and this information is going to 
be subsequently useful for querying the database. Our approach 
relies on the idea that humans are more likely to add the necessary 
metadata during creation time. As a major contribution of this 
paper, we present algorithms that identify structured attributes that 
are likely to appear within the document, by jointly utilizing the 
content of the text and the query workload. 
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I. INTRODUCTION

Current information sharing tools, like content management 
software (e.g., Microsoft SharePoint), allow users to share 
documents and annotate (tag) them in an ad-hoc way. 
Similarly, Google [1] allows users to define attributes for their 
objects or choose from predefined templates. This annotation 
process can facilitate subsequent information discovery. Many 
annotation systems allow only “untyped” keyword annotation: 
for instance, a user may annotate a weather report using a tag 
such as “Storm Category 3”. 

Annotation strategies that use attribute-value pairs are 
generally more expressive, as they can contain more 
information than untyped approaches. Many systems, though, 
do not even have the basic “attribute-value” annotation that 
would make a “pay-as-you go” querying feasible. Annotations 
that use “attribute-value” pairs require users to be more 
principled in their annotation efforts. Difficulties results in 
very basic annotations, that is often limited to simple 
keywords. Such simple annotations make the analysis and 
querying of the data cumbersome. Users are often limited to 

plain keyword searches, or have access to very basic 
annotation fields, such as “creation date” and “owner of 
document”. 

The main goal of CADS is to lower the cost of creating 
annotated documents that can be immediately used for 
commonly issued semi-structured queries. Our key goal is to 
encourage the annotation of the documents at creation time, 
while the creator is still in the “document generation” phase, 
even though the techniques can also be used for post 
generation document annotation. Once uploaded, CADS 
analyzes the text and creates an adaptive insertion form. The 
form contains the best attribute names given the document text 
and the information need, and the most probable attribute 
values given the document text. The creator can inspect the 
form, modify the generated metadata as- necessary, and 
submit the annotated document for storage. 

II. FRAMEWORK AND PROBLEM DEFINITION

In this section, we present the notation that we use in the rest 
of the paper and describe the problem setting. As discussed in 
Section 1, our goal is to suggest annotations for a document. 
We define a document d as a pair (dt, da), composed of the 
textual content dt and the set of existing user annotations da. 
We use to denote the complete and optimal set of annotations 
for d. The dopt

a serves as a conceptual baseline, i.e., is created 
by an oracle with perfect knowledge of the domain of d ( e.g., 
disaster management) and, of course, dopt

a  is unknown to the 
algorithm that is trying to estimate as accurately as possible 
the dopt

a .  

Table 1 summarizes the notation presented. Using the above, 
we define our problem. A straightforward goal is to produce 
and display in the adaptive insertion form dopt

a  a , given dt; 
this is usually a very large set of annotations. Even if we 
could produce all relevant annotations, a large number of such 
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annotations may also overwhelm the user who must examine, 
modify, and approve all the suggestions. Hence, our efforts 
focus not only on identifying the potential annotations fields 
that exist in dopt

a, but also to rank them and display on top the 
most important ones. Since the goal of annotations is to 
facilitate future querying, we want the annotation effort to 
focus on generating annotations useful for the queries in the 
query workload W. So, if users are willing to fill-in at most k 
annotations for a single document (where k is arbitrary, but 
fixed), our goal is to generate a subset of dopt

a while under the 
constraint of at-most-k- annoations. This set of annotations 
should be the one that increases the visibility of document d in 
W, that is, maximizes the number of queries that retrieve d. 

Table 1: Notation 

III. ATTRIBUTES SUGGESTION

In this section we study and propose solutions for the 
“attributes suggestion” problem. From the problem definition 
we identify two, potentially conflicting, and properties for 
identifying and suggesting attributes for a document d: 

• First, the attributes must have high querying value
with respect to the query workload W. That is, they
must appear in many queries in W, since the frequent
Attributes in W have a greater potential to improve
the visibility of d.

• Second, the attributes must have high content value
with respect to dt. That is, they must be relevant to dt.
Otherwise, the user will probably dismiss the
suggestions and d will not be properly annotated.

We combine both objectives, in a principled way, using a 
probabilistic approach. Our theoretical model is similar to the 
idea of language models [2], with one key difference: our 
model assume that attributes are generated by two processes, 
in parallel: (a) By inspecting the content of the document and 
extracting a set of attributes related to the content of the 
document, following a probability distribution given by an 
(unknown to us) joint probability distribution  and (b) 
By knowing the types of queries that users typically issue to 
the database, following again an (unknown to us) joint 
probability distribution 

3.1 Conditional Independence given Aj and Aj 

We denote with  be the posterior probability that 
document d is annotated with Aj , given the forecast of W,d 
and a prior belief P of CADS about the probability of adding 
Aj in any document.5 We define the score of attribute Aj as the 
odds that the attribute should appear in da. Using the Bayes 
theorem: 

The numerator and denominator are equivalent to the joint 
distributions p(P,W, dt,Aj) and p(P,W, dt,Aj), respectively. 
Using the chain rule on both terms: 

If W is independent of P, given A, and dt is independent 
of W,P, we simplify: 

Our prior belief P is independent of p(Aj), as we are not using 
any external knowledge to affect the estimates. So, the above 
equation can be further simplified to: 

Equation 1 is our score function. The first term represents the 
likelihood of producing Aj , given the workload W. We refer 
to that term as querying value as it expresses the “relevance” 
of the attribute to the query workload. The second term, which 
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we refer to as content value is the likelihood of observing the 
content dt given that the attribute Aj appears in the document. 

3.2 Estimation Process 
We now present our process for estimating the values of the 
parameters in Equation 1.  

Querying Value: Let WAj = {Q 2 W: use (Q,Aj)} be the set of 
queries in W that use Aj as one of the predicate conditions. We 
use Laplace smoothing [3] to avoid zero probabilities for the 
attributes that do not appear in the workload, we have: 

in dt, which is a typical assumption when dealing with textual 
data (e.g., in probabilistic information retrieval, text 
classification, language models, etc.) We have: 

where the product goes over all terms w in dt. 

Let DAj = {d 2 D : annotated(d,Aj)} be the set of documents in 
the database D, annotated with the attribute Aj .  

Let DAj ,w = {d 2 D : annotated(d,Aj) ^ contains(dt,w)} be the 
set of documents in the database that are annotated with Aj 
and also contain the word w in their text dt. We estimate the 
probability of each term in Equation 3 as: 

Again we use smoothing to avoid zero probabilities. For each 
term, the prior is uniform and we update the probability using 
the observed co-occurrences of Aj and w. In a similar way we 
define: 

where we examine only documents that have been annotated 
and the attribute Aj was not added. 

3.2 Conditional Independence among Forecaster Evidence 
The second model is based on the assumption that each of the 
two forecasters has independent information about the event 
“attribute A appears in the document,” (which is different than 
conditioning on Aj). We capture this information as a variable 

with distribution p that models the occurrence of the event 
“attribute A j appears in the document” as a Bernoulli 
experiment.  

Our final estimates is computed based on independent pieces 
of evidence, using the following model [4]: 

IV.  EFFICIENCY ISSUES AND SOLUTIONS

In this section, we discuss the algorithmic approaches that 
allow us to implement efficiently the algorithms described in 
the previous section. In particular, we show how pipelined 
algorithms can be employed [3] to compute the top-k 
attributes with the highest scores, where scores are defined 
using Equation 1 (Bayes strategy). 

 We observe that in both strategies the score is a 
monotonically increasing function (f(QV, CV ) = CV ·QV for 
Bayes. 

V. EXPERIMENTS

5.1 Datasets 
Documents: For our experiments we use two document 
collections:  

• The Emergency corpus consists of 270 documents, generated
by the Miami-Dade Emergency Management Office. The
documents are advisory, progress and situation reports
submitted by various county stakeholders during the five days
before and after Hurricane Wilma, which hit Miami-Dade
County in October 2005.

• The CNET corpus consists of 4,840 electronic product
reviews obtained from CNET. The dataset contains different
kinds of products like cameras, video games, television, audio 
sets, and alarm clocks.

5.2 Annotations:  
We generated annotations for the datasets, which we use as 
training and test data, to train and evaluate our algorithms. 
To annotate the CNET reviews we used the CNET 
specifications page for each product. The page contains 
structured data for a product in the form of “attribute name 
value”. Given that we are only interested in annotations that 
come from the document text (i.e. the product’s review), we 
removed annotations that are not mentioned in any sentence in 
the review text. To decide when a sentence s is related 
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(mentions) to an annotation we used the 
containment ratio heuristic; specifically, we computed: 

5.3 Queries: 
When generating the query workload for our datasets we had 
to address two main challenges. First, we did not have a query 
workload that was used to query the data sets in our disposal. 
So, we had to generate a workload, with an attribute 
distribution representing the user interests in a realistic way. 
Second, we had to create queries of the form attribute-value as 
described in Section 2. 

Then, used the relative frequencies of the queries in the 
Google Insights/Trends to weight appropriately the workload 
in the results. For example, for the emergency data set we 
could see more queries related with the status of the schools 
on the city compared to queries asking for the status of the 
ports.  

5.4 Attributes Suggestion Problem 
In this experiment, we examine how the different strategies 
solve the Attributes Suggestion Problem, which is the core 
focus of our work. That is, if a strategy is used for attributes 
suggestion, how well [4] are the queries of the workload 
answered? To measure this we use the sum of documents 
returned by the queries in the workload, where a document is 
counted multiple times, once for every query that returns it. 
We refer to this measure as Full Match. We also consider a 
simpler variant, Partial Match, where we count how many 
query conditions are satisfied by the documents, that is, we 
view each query condition as a separate query. We first 
introduce the optimal suggestion techniques, which will be 
used as baselines to evaluate the strategies. 

• OPTFullMatch suggests the subset of the ground-truth
attributes for each document that maximize its query visibility
in the query workload, that is, that satisfies the maximum
number of queries. Miah et al. [5] prove that this problem is
NP-Hard. However, given the relatively small size of our
query workload, we were able to compute an exact solution
using the exact algorithm from, following a brute-force
approach, which took a significant amount of time but allowed
us to measure exactly how close to the optimal each algorithm
is.

• OPTPartialMatch suggests a subset of the ground-truth
attributes that maximize the number of query conditions

satisfied. This can be computed making a single pass on the 
workload 

We report the average coverage across all documents, where 
the coverage for one document is defined as the number of 
matches (or partial matches) divided by the number of 
matches of OPTFullMatch (or OPTPartialMatch, 
respectively). Fig 1 and 2 show the average coverage for full 
and partial matches for the strategies.  

Fig 1 : Number of Full and Partial Matches in Emergency Dataset 

Fig 2 : Number of Full and Partial Matches in CNET Dataset 

VI. RELATED WORK

Collaborative Annotation: There are several system the favor 
the collaborative annotation of objects and use previous 
annotations or tags to annotate new objects. There has been a 
significant amount of work in predicting the tags for 
documents or other resources. Dataspaces and pay-as-you-go 
integration: The integration model of CADS is similar to that 
of dataspaces, where a loosely integration model is proposed 
for heterogeneous sources. The basic difference is that 
dataspaces integrate existing annotations for data sources, in 
order to answer queries. Our work suggests the appropriate 
annotation during insertion time, and also takes into 
consideration the query workload to identify the most 
promising attributes to add. Another related data model is that 
of Google Base [1], where users can specify their own 
attribute/value pairs, in addition to the ones proposed by the 
system. However, the proposed attributes in Google Base are 
hard-coded for each item category (e.g., real estate property). 
In CADS, the goal is to learn what attributes to suggest. Pay-
as-you go integration techniques like Pay Go and [2] are 
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useful to suggest candidate matchings at query time. However, 
no previous work considers this problem at insertion time, as 
in CADS. The work on Peer Data Management Systems is a 
precursor of the above projects. 

 VII      CONCLUSION 

We proposed adaptive techniques to suggest relevant 
attributes to annotate a document, while trying to satisfy the 
user querying needs. Our solution is based on a probabilistic 
framework that considers the evidence in the document 
content and the query workload. We present two ways to 
combine these two pieces of evidence, content value and 
querying value: a model that considers both components 
conditionally independent and a linear weighted model.  
Experiments shows that using our techniques, we can suggest 
attributes that improve the visibility of the documents with 
respect to the query workload by up to 50%. That is, we show 
that using the query workload can greatly improve the 
annotation process and increase the utility of shared data. 
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